Classification Trees

Classification Trees

author: Son Nguyen

Reading Materials

► Max Kuhn. Chapter 14. Section 14.1

Decision Boundary in Classification

Classification is a process of finding the **decision boundary** that best separates two classes

Decision Boundary in Classification

Decision Boundary in Classification

► SVM = Support Vector Machine

Decision Tree

- ▶ Decision Tree for classification is **Classification Tree**
- ▶ Decision Tree for Regression is **Regression Tree**

Example of Classification Tree

Link

Example of Classification Tree

Example of Classification Tree

Note:- A is parent node of B and C.

Classification Tree

► In two dimension, classification Tree's decision boundary is a collection of horiontal and vertical line

Find a vertical line that best seperate **red** and **green**.

One way to seperate the reds and greens

One way to seperate the reds and greens

Question

▶ **Question**: Which is the best split?

Partial Answer

► It looks like Split 1 and 3 are better than Split 2 since it misclassifies less

Partial Answer

▶ Which is the better split between Split 1 and Split 3?

Partial Answer

▶ We need to find a way to measure how good a split is

The impurity of a node (a node = a subset of the data or the original data) measure how uncertain the node is.

► For example, node A with 50% reds and 50% greens would be more uncertained than node B with 90% reds and 10% greens. Thus, node A has greater impurity than node B.

► More uncertained = Greater impurity

Children Impurity

► A split resulting smaller children impurity is a **better split**

Children Impurity (Ichildren)

$$I_{children} = \frac{N_{left}}{N}I_{left} + \frac{N_{right}}{N}I_{right}$$

- $ightharpoonup N_{left}$ and N_{right} are the number of points in the left child node and right child node, respectively.
- $ightharpoonup N_{left} + N_{right} = N$

► Impurity can be measured by: classification error, Gini Index, and Entropy.

▶ Let p_0 and p_1 be the proportion of class 0 and class 1 in a node.

By Classification Error:
$$I = min\{p_0, p_1\}$$

By Gini Index:
$$I = 1 - p_0^2 - p_1^2$$

By Entropy:
$$I = -p_0 \log_2(p_0) - p_1 \log_2(p_1)$$

$$I = min \{.4, .6\} = .4$$

$$1 - P_0^2 - P_1^2 = 1 - .4^2 - .6^2$$

$$= -.4.\log_2.4 - .6\log_2.4$$

$$I = \min \left\{ .1, .9 \right\}$$

$$I = .1$$

$$3$$

$$I = -.1 \cos_{1}.1 - .9 \cos_{2}.9$$

$$= .46899$$

Calculation

▶ Let's calculate the Children Impurity ($I_{children}$) of the three splits to decide which split is the best

Split 1: Impurity by Classification Error

Let **green** and **red** be class 0 and class 1, respectively.

For Split 1:
$$N = 5$$
, $N_{left} = 1$, $N_{right} = 4$

Split 1: Impurity by Classification Error

- Node *child left*, L: $p_0 = \frac{0}{1} = 0$, $p_1 = \frac{1}{1} = 1$. Thus, $I_L = \min(0, 1) = 0$
- Node *child right*, R: $p_0 = \frac{3}{4}$, $p_1 = \frac{1}{4}$. Thus, $I_R = \min(\frac{3}{4}, \frac{1}{4}) = \frac{1}{4}$
- ► Children Impurity of Split 1:

Green Rod
$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$

$$= \frac{1}{5} \cdot 0 + \frac{4}{5} \cdot \frac{1}{4} = 0.2$$

Split 2: Impurity by Classification Error

For Split 2: N = 5, $N_{\textit{left}} = 2$, $N_{\textit{right}} = 3$

Split 2: Impurity by Classification Error

- ▶ Node *child left*, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{2}$. Thus, $I_L = \frac{1}{2}$
- Node *child right*, R: $p_0 = \frac{2}{3}$, $p_1 = \frac{1}{3}$. Thus, $I_R = \min(\frac{2}{3}, \frac{1}{3}) = \frac{1}{3}$
- ► Children Impurity of Split 2:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$

$$= \frac{2}{5} \cdot \frac{1}{2} + \frac{3}{5} \cdot \frac{1}{3} = 0.4$$

Split 3: Impurity by Classification Error

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: Impurity by Classification Error

- ▶ Node *child left*, L: $p_0 = \frac{1}{3}$, $p_1 = \frac{2}{3}$. Thus, $I_A = \min(\frac{1}{3}, \frac{2}{3}) = \frac{1}{3}$
- Node *child right*, R: $p_0 = \frac{2}{2}, p_1 = \frac{0}{2}$. Thus, $I_R = \min(1, 0) = 0$
- Children Impurity of Split 3:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$

$$= \frac{3}{5} \cdot \frac{1}{3} + \frac{2}{5} \cdot 0 = 0.2$$

Comparing Impurity by Classification Error

	I _{children}
Split 1	0.2
Split 2	0.4
Split 3	0.2

▶ By classification error, Split 1 and Split 3 are tie as the best because they have the same Children Impurity (*I_{children}*).

Split 1: Impurity by Gini Index

For Split 1: N = 5, $N_{left} = 1$, $N_{right} = 4$

Split 1: Impurity by Gini Index

▶ Node *child left*, L: $p_0 = \frac{0}{1} = 0$, $p_1 = \frac{1}{1} = 1$. Thus,

$$I_1 = 1 - 0^2 - 1^2 = 0$$

Node *child right*, R: $p_0 = \frac{3}{4}$, $p_1 = \frac{1}{4}$. Thus,

$$I_R = 1 - (\frac{3}{4})^2 - (\frac{1}{4})^2 = 0.375$$

Children Impurity of Split 1:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$
$$= \frac{1}{5} \cdot 0 + \frac{4}{5} \cdot 0.375 = 0.3$$

Split 2: Impurity by Gini Index

For Split 2: N = 5, $N_{left} = 2$, $N_{right} = 3$

Split 2: Impurity by Gini Index

- Node *child left*, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{2}$. Thus, $I_L = 1 (\frac{1}{2})^2 (\frac{1}{2})^2 = 0.5$
- Node *child right*, R: $p_0 = \frac{2}{3}$, $p_1 = \frac{1}{3}$. Thus, $I_R = 1 (\frac{2}{3})^2 (\frac{1}{3})^2 = 0.44$
- ► Children Impurity of Split 2:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$
$$= \frac{2}{5} \cdot \frac{1}{2} + \frac{3}{5} \cdot 0.44 = 0.464$$

Split 3: Impurity by Gini Index

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: Impurity by Gini Index

- Node *child left*, L: $p_0 = \frac{1}{3}$, $p_1 = \frac{2}{3}$. Thus, $I_A = 1 (\frac{1}{3})^2 (\frac{2}{3})^2 = 0.44$
- Node *child right*, R: $p_0 = \frac{2}{2}$, $p_1 = \frac{0}{2}$. Thus, $I_R = 1 0^2 1^2 = 0$
- ► Children Impurity of Split 3:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$
$$= \frac{3}{5} \cdot 0.44 + \frac{2}{5} \cdot 0 = 0.184$$

Comparing Impurity by Gini Index

	I _{children}
Split 1	0.3
Split 2	0.464
Split 3	0.184

▶ By Gini Index, Split 3 is the best because it has the smallest Children Impurity (*I_{children}*).

Split 1: Impurity by Entropy

For Split 1: N = 5, $N_{left} = 1$, $N_{right} = 4$

Split 1: Impurity by Entropy

- Node *child left*, L: $p_0 = \frac{0}{1} = 0$, $p_1 = \frac{1}{1} = 1$. Thus, $I_L = 0$
- Node child right, R: $p_0 = \frac{3}{4}$, $p_1 = \frac{1}{4}$. Thus,

$$I_R = -log_2(\frac{3}{4}) - log_2(\frac{1}{4}) = 0.811$$

Children Impurity of Split 1:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$

$$= \frac{1}{5} \cdot 0 + \frac{4}{5} \cdot 0.811 = 0.649$$

Split 2: Impurity by Entropy

For Split 2: N = 5, $N_{\textit{left}} = 2$, $N_{\textit{right}} = 3$

Split 2: Impurity by Entropy

- Node *child left*, L: $p_0 = \frac{1}{2}$, $p_1 = \frac{1}{2}$. Thus, $I_L = -log_1(\frac{1}{2}) log_2(\frac{1}{2}) = 1$
- Node *child right*, R: $p_0 = \frac{2}{3}$, $p_1 = \frac{1}{3}$. Thus, $I_R = -log_2(\frac{2}{3}) log_2(\frac{1}{3}) = 0.918$
- ► Children Impurity of Split 2:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$

$$= \frac{2}{5} \cdot 1 + \frac{3}{5} \cdot 0.918 = 0.951$$

Split 3: Impurity by Entropy

For Split 3: N = 5, $N_{left} = 3$, $N_{right} = 2$

Split 3: Impurity by Entropy

- Node child left, L: $p_0 = \frac{1}{3}$, $p_1 = \frac{2}{3}$. Thus, $I_A = -log_2(\frac{1}{3}) log_2(\frac{2}{3}) = 0.918$
- Node child right, R: $p_0 = \frac{2}{2}$, $p_1 = \frac{0}{2}$. Thus, $I_R = 0$
- Children Impurity of Split 3:

$$I_{children} = \frac{N_{left}}{N}I_L + \frac{N_{right}}{N}I_R$$
$$= \frac{3}{5} \cdot 0.918 + \frac{2}{5} \cdot 0 = 0.551$$

Comparing Impurity by Entropy

	I _{children}
Split 1	0.649
Split 2	0.951
Split 3	0.551

▶ By Gini Index, Split 3 is the best because it has the smallest Children Impurity $(I_{children})$.

Comparing Impurity Measures

▶ Relation between impurity and the class probabilities. All impurity measures are maximized at $p_1 = 1/2$ and minimized at $p_1 = 0$ and $p_1 = 1$.

Another Example

- Which split is better?

Decide the best split using Chi-Square test of Independence

▶ Besides Children Impurity, one can use the Chi-square, χ^2 , test of independence to decide the best split.

Split! Coolor) Variable 1: Green - Red

Green Red (Grarch) Variable: Voft - right

Rish Smuch

Review of Chi-Square test of Independence

- Let X and Y be two categorical variables.
- ▶ We want to test if X and Y are independent/associated
 - $ightharpoonup H_0$: X and Y are independent
 - $ightharpoonup H_{\alpha}: X \text{ and } Y \text{ are dependent}$
- ► Test statistic:

$$\sum rac{(e_i-o_i)^2}{e_i} \sim \chi^2$$
 distribution with degree of freedom $(n-1)(m-1)$

Review of Chi-Square test of Independence

- In our context, the greater the χ^2 value, the smaller the p-value
- ▶ The smaller the p value, the more dependent the two variables are. Thus the better the split is.
- ▶ Therefore, we look for the split with the **greatest** χ^2 **value.**

Applying to Our Example

- \blacktriangleright We will calculate the χ^2 values of the three splits.
- ▶ The best split is the split with the greatest χ^2 value.

	Greens	Reds	Total
Left Branch	0	1	1
Right Branch	3	1	4
Total	3	2	

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- i = 1 (Cell 1): $e_1 = \frac{1 \cdot 3}{5}$, $o_1 = 0$
- i = 2 (Cell 2): $e_2 = \frac{1 \cdot 2}{5}$, $o_2 = 1$
- i = 3 (Cell 3): $e_3 = \frac{3.4}{5}$, $o_3 = 3$
- i = 4 (Cell 4): $e_4 = \frac{2 \cdot 4}{5}$, $o_4 = 1$
- Plug in, we have:

$$\chi^2 = 1.875$$

	Greens	Reds	Total
Left Branch	1 (Cell 1)	1 (Cell 2)	2
Right Branch	2 (Cell 3)	1 (Cell 4)	3
Total	3	2	

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- i = 1 (Cell 1): $e_1 = \frac{2 \cdot 3}{5}$, $o_1 = 1$
- i = 2 (Cell 2): $e_2 = \frac{2 \cdot 2}{5}$, $o_2 = 1$
- i = 3 (Cell 3): $e_3 = \frac{3 \cdot 3}{5}$, $o_3 = 2$
- i = 4 (Cell 4): $e_4 = \frac{3 \cdot 2}{5}$, $o_4 = 1$
- Plug in, we have:

$$\chi^2 = 0.139$$

	Greens	Reds	Total
Left Branch	1 (Cell 1)	2 (Cell 2)	3
Right Branch	2 (Cell 3)	0 (Cell 4)	2
Total	3	2	

$$\chi^2 = \frac{(e_1 - o_1)^2}{e_1} + \frac{(e_2 - o_2)^2}{e_2} + \frac{(e_3 - o_3)^2}{e_3} + \frac{(e_4 - o_4)^2}{e_4}$$

- ightharpoonup (Cell 1): $e_1 = \frac{2 \cdot 3}{5}$, $o_1 = 1$
- ightharpoonup (Cell 2): $e_2 = \frac{2 \cdot 2}{5}$, $o_2 = 2$
- ightharpoonup (Cell 3): $e_3 = \frac{3 \cdot 3}{5}$, $o_3 = 2$
- ightharpoonup (Cell 4): $e_4 = \frac{3 \cdot 2}{5}$, $o_4 = 0$
- Plug in, we have:

$$\chi^2 = 2.222$$

Comparing the three splits

χ^2
1.875
0.139
2.222

▶ Split 3 is the best because it has the greatest χ^2 !

Logworth

- ► The quality of the split can be measured by **Logworth**
- ► Formula:

$$logworth = -log(p_{value})$$

▶ The greater the logworth, the better the split

Logworth

	χ^2	p-value	logworth	= -log(p-value)
Split 1	1.875	0.114	0.943	
Split 2	0.139	0.998	0.0008	
Split 3	2.222	0.088	1.055	

- ▶ Greatest $\chi^2 = \text{Lowest } p value = \text{Greatest logworth} = \text{Best Split}$
- ► Split 3 is the best split!

What happens after the first split?

- After the first split, the data are divided into to subsets.
- ► The splitting process is repeated for each subset.
- The process ends when a stopping criteria is satisfied

Stopping Criteria

- Minimum Leaf Size: The minimum of observations in the leaves
- Maximum Number of Leaves
- Maximum Depth
- Others

Stopping Criteria

Decision Tree Algorithm - How to grow a tree

- Step 1: Calculate the Children Impurity or p − value of all possible splits at all variables
- Step 2: Select the split that give the minimum Children Impurity or lowest p — value to split the data into two subdata D₁ and D₂
- ▶ Repeat Step 1 and Step 2 to both D_1 and D_2 .
- Until a stopping criteria is satisfied

Complexity of Decision Tree

- A complexity of a tree can be measured by the <u>number of</u> leaves the tree has.
- ▶ The more leaves a tree has, the more complex the tree is.
- ► A complex tree may be **overfitted**, i.e. having low training error but high testing error.

Prunning a tree

- For any given data, one can construct a tree that achives 0 misclassification on training data
- After growing the tree one needs to prune it to avoid overfittted

Prunning a tree

- ➤ The tree with maximum number of leaves is called the maximal tree (still satisfied the stopping rule)
- ► From the **maximal tree**, leaves are cut down, one by one, to obatined all possible subtrees
- ➤ The subtree with lowest error on validation data, is the optimal tree

Maximal vs Optimal Tree

Example of Tree Prunning

Example of Tree Prunning

- ▶ All the subtrees A, B, C, D, and E will be validated with the validation data to find the **optimal tree**
- ► The optimal tree could be the maximal tree!

Question

- What if both B and C give the lowest error on the validation data? Which tree should be selected as the final model?

we choose C because it is simpler.

100 100 ...

1 4 25

100 95 .-