

Linear

Model

Son Nguyen

• Given the data

ullet How are y and x related?

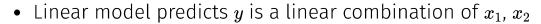
• Given the data

ullet Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

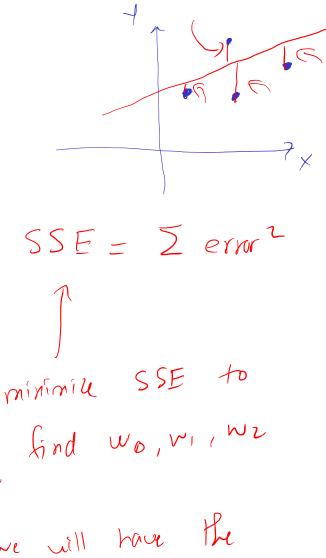
Grant combration of the predictors

• Given the data



$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

- The goal of linear model is to solve for w_0 , w_1 and w_2
- To **train** a linear model is to find w_0 , w_1 and w_2



Solve this we will have the last squared solution.

$$f(w) = w^{2} + 2w + 5 - 50 = 6 \text{ for } \sqrt{f'(w)} = 0 = 0 \text{ for } \sqrt{f'(w)} = 0 \text{ for } \sqrt{f'(w)} = 0 = 0$$

Solve for
$$\frac{\partial f}{\partial w_0} = 0$$
, $\frac{\partial f}{\partial w_0} = 0$

Given the data

x_1	x_2	y
1	0	- 2
2	1	0
3	- 2	-1
4	3	1

what if we went to minimile I lerror

= 7, 17-91

• Linear model predicts y is a linear combination of x_1, x_2

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

- The goal of linear model is to solve for w_0 , w_1 and w_2
- To **train** a linear model is to find w_0 , w_1 and w_2

$$= \sum | t - w_0 - w_1 x_1 - w_2 x_1$$

Cannot use

Re "derivative" approach =

ble 1-1 is not differiable.

Solve this, we would a different solution.

• Given the data

• Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2$$

- ullet The goal of linear model is to solve for $w_0,\,w_1$ and w_2
- To **train** a linear model is to find w_0 , w_1 and w_2

• **Step 1**: Define the loss function $l(y,\hat{y})$

,

- Step 1: Define the loss function $l(y,\hat{y})$
- **Step 2**: Find w that minimizes the total loss function.

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a loss function.

x_1	x_2	$oldsymbol{y}$	$\hat{y}=w_0+w_1x_1+w_2x_2$	$(\hat{y}-y)^2$
1	0	-2	$w_0 + w_1 \cdot 1 + w_2 \cdot 0$	$(w_0 + w_1 \cdot 1 + w_2 \cdot 0 + 2)^2$
2	1	0	$w_0+w_1\cdot 2+w_2\cdot 1$	$(w_0 + w_1 \cdot 2 + w_2 \cdot 1 - 0)^2$
3	-2	-1	$w_0+w_1\cdot 3+w_2\cdot -2$	$(w_0 + w_1 \cdot 3 + w_2 \cdot -2 + 1)^2$
4	3	1	$w_0+w_1\cdot 4+w_2\cdot 3$	$(w_0 + w_1 \cdot 4 + w_2 \cdot 3 - 1)^2$

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y} - y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.

x_1	x_2	$oldsymbol{y}$	$\hat{y}=w_0+w_1x_1+w_2x_2$	$(\hat{y}-y)^2$
1	0	-2	$w_0 + w_1 \cdot 1 + w_2 \cdot 0$	$(w_0 + w_1 \cdot 1 + w_2 \cdot 0 + 2)^2$
2	1	0	$w_0 + w_1 \cdot 2 + w_2 \cdot 1$	$(w_0 + w_1 \cdot 2 + w_2 \cdot 1 - 0)^2$
3	-2	-1	$w_0+w_1\cdot 3+w_2\cdot -2$	$(w_0 + w_1 \cdot 3 + w_2 \cdot -2 + 1)^2$
4	3	1	$w_0+w_1\cdot 4+w_2\cdot 3$	$(w_0 + w_1 \cdot 4 + w_2 \cdot 3 - 1)^2$

• The total loss function:

$$L = L(w_0, w_1, w_2) = (w_0 + w_1 + 2)^2 + (w_0 + 2w_1 + w_2)^2 \ + (w_0 + 3w_1 - 2w_2 + 1)^2 + (w_0 + 4w_1 + 3w_2 - 1)^2$$

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y} - y)^2$$

- We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.
- The total loss function:

$$L = L(w_0, w_1, w_2) = (w_0 + w_1 + 2)^2 + (w_0 + 2w_1 + w_2)^2 \ + (w_0 + 3w_1 - 2w_2 + 1)^2 + (w_0 + 4w_1 + 3w_2 - 1)^2$$

• Solve for the partial derivatives equaling 0 to find w_0 , w_1 and w_2 .

How about other loss functions?

• Absolute loss:

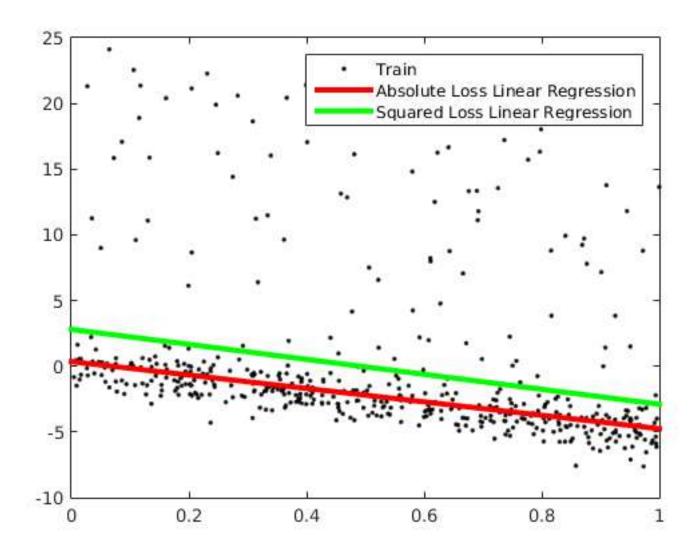
$$L(\hat{y},y) = |\hat{y} - y|$$

• The total loss function:

$$L = L(w_0, w_1, w_2) = |w_0 + w_1 + 2| + |w_0 + 2w_1 + w_2| \ + |w_0 + 3w_1 - 2w_2 + 1| + |w_0 + 4w_1 + 3w_2 - 1|$$

- Use Linear Programming to find w_0 , w_1 and w_2 that minimizes the total loss.
- Least absolute deviations regression

Linear Models



How about other loss functions?

Ordinary least squares regression	Least absolute deviations regression
Not very robust	Robust
Stable solution	Unstable solution
Always one solution	Possibly multiple solutions

A general framework

- **Problem**: Given the data of x_1, x_2, \ldots, x_d, y , establish the *best* relation between y and $x = [x_1, x_2, \ldots, x_d]$.
- A solution framework:
 - \circ Step 1: Assume the model function $\hat{y} = f(x, w)$, where w is a parameter vector.
 - \circ Step 2: Define the loss function $l(y,\hat{y})$

 \circ Step 3: Find w that minimizes the loss function using gradient descent

approximation method to solve for $\frac{\partial f}{\partial w_i} = 0$

LASSO

• Consider a linear model

$$y=100x_1+0.01x_2+50x_3-0.002x_4$$

- ullet x_2 and x_4 are not important because the coefficients are too small.
- ullet We want to get rid of x_2 and x_4

LASSO - Principle

- LASSO forces the sum of the absolute value of the coefficients to be less than a fixed value.
- which forces certain coefficients (slopes) to be set to zero
- effectively making the model simpler

$$f(w) = (w - 3)^{2} + 4$$

$$w = 3 \quad \text{minimize} \quad f(w)$$

$$f(w) = (w-1)^{2} + 4$$

$$constrain: |w| |s|$$

Linear Model vs. LASSO - Principle

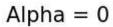
• Linear Model minimizes

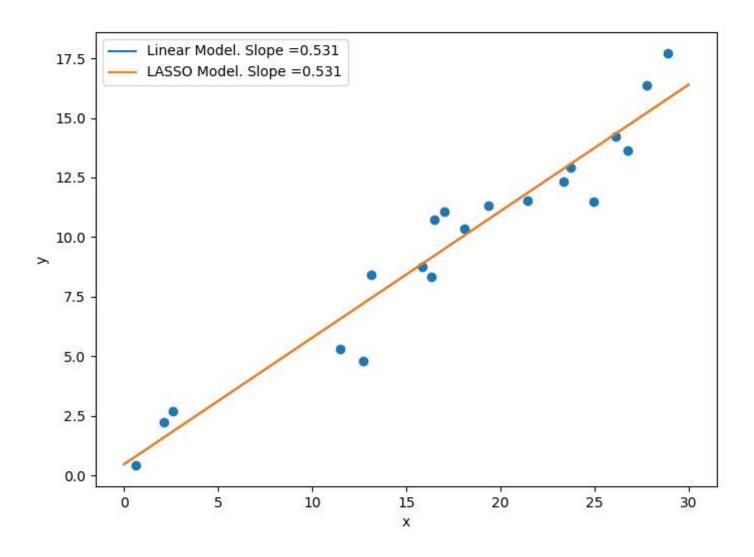
$$L(w_0,w_1,w_2)$$

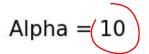
• LASSO minimizes

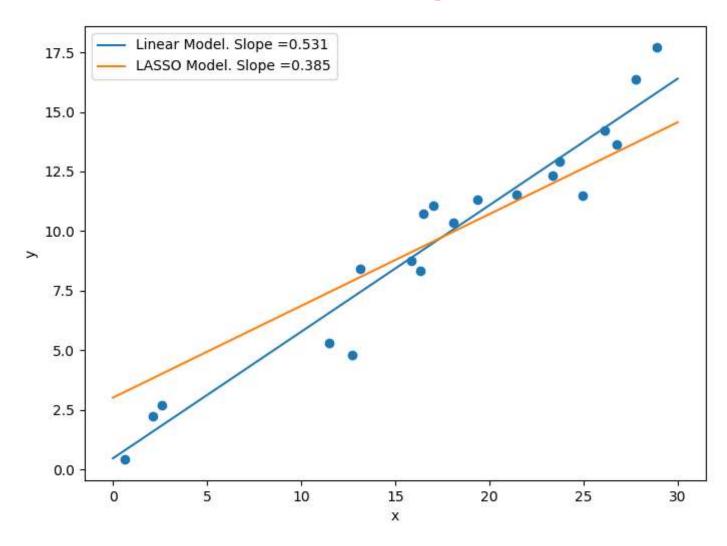
$$L(w_0,w_1,w_2)+lphaigg(|w_1|+|w_2|igg)$$

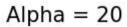
- The greater α , the easier w_1 and w_2 will be zeros.
- When $\alpha=0$, LASSO is the linear model.

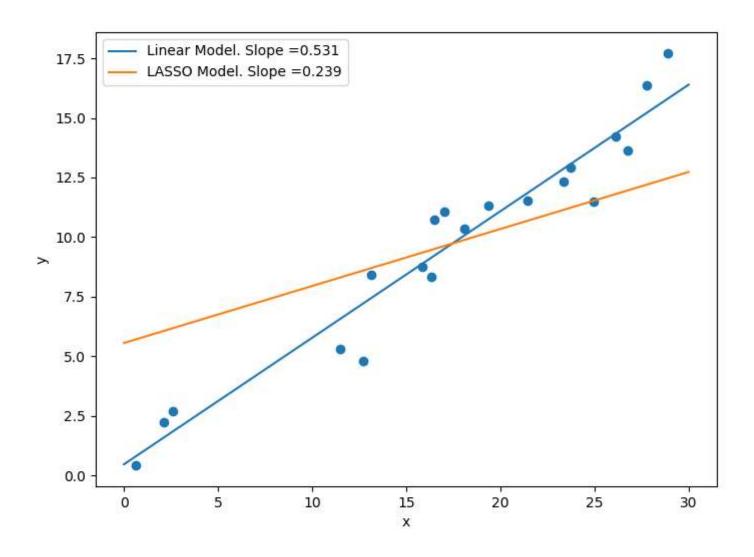


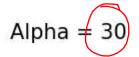


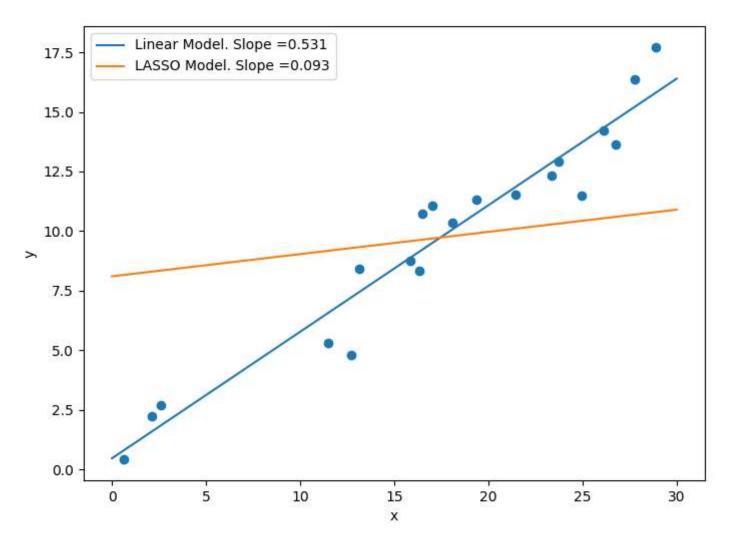


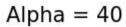


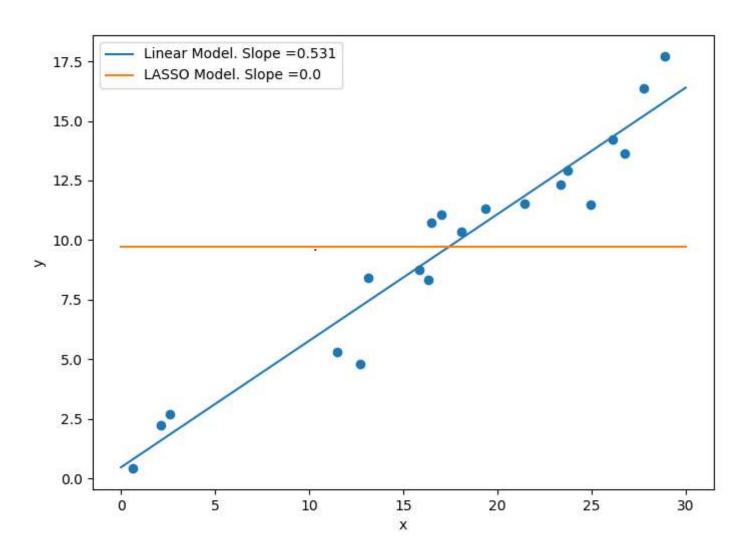


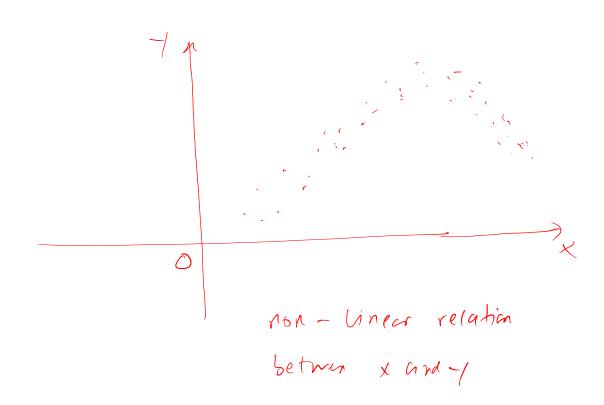








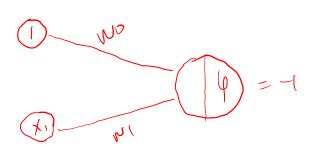




1) Graphical pre sentation of Unear model.

+= $w_0+w_1X_1$

(algebraic presentation)



$$\varphi(t) = t$$

$$\frac{1}{1+e^{-(w_0+w_1y_1)}}$$

$$\varphi(t) = \frac{1}{1 + e^{-t}}$$

((t): actuation function

Example:

$$\begin{aligned}
Y &= SIn \left(N_0 + W_1 X_1\right) + W_2 \cos \left(W_3 + W_4 X_1\right) \\
+ W_5 &= \frac{W_6 X_1}{W_2} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_3} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_1} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_1} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_4} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_4} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_4} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_2 + W_4 \times W_4} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_3 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \cos \left(W_4 + W_4 X_1\right) \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \times W_4 \times W_4 \times W_4 \\
&= \frac{W_6 X_1}{W_4 + W_4 \times W_4} + W_4 \times W_4 \times W_4 \\
&=$$

$$7 = w_1 \cdot x_1$$

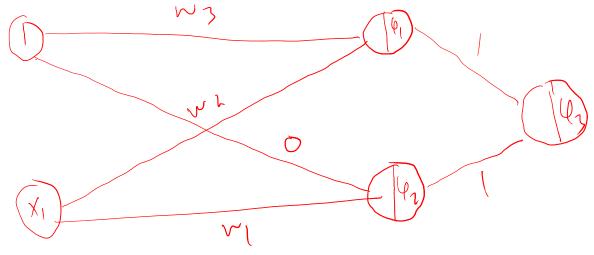
$$\frac{1}{2} = (w_2 x_1 + w_3) \cdot \ln(w_1 x_1)$$

$$t = x_1 x_2$$

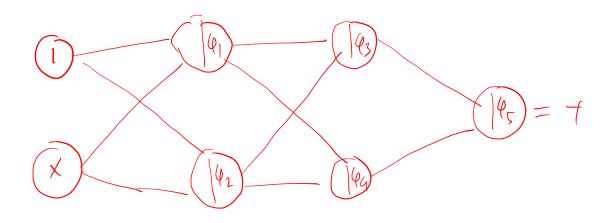
$$\ln \gamma = \ln x_1 + \ln x_2$$

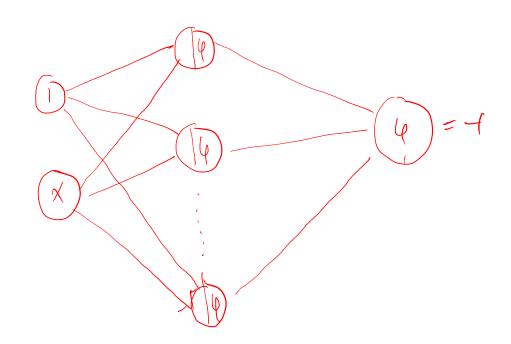
$$ln(ln-l) = ln(w_2 x_1 + w_3) + ln(ln(v_1x_1))$$

 $4_1(t) = ln(t)$



$$(q_{3}(t) = 1n((n(t)))$$
 $(q_{3}(t) = t)$





All G, G2... 95

are liner activ.

Function

then the relation

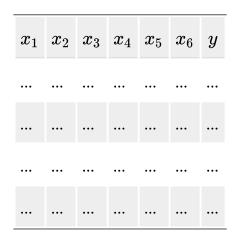
Setweren x and -1

Still linear.

This network uses
only 1 t-rpe of
actional Curction
(p(t), ron-linear.

LASSO for Variables Selection

• Data



• Assume that the truth relation between the input $x_1, x_2, x_3, x_4, x_5, x_6$ and the output y is

$$y = 4x_2 + 3x_4 + 7x_6$$

- ullet We see that only x_2 , x_4 and x_6 impact y
- ullet LASSO can help to identify variables that have effect on y

LASSO for Variables Selection

• The result when training the linear model and the LASSO

	w_1	w_2	w_3	w_4	w_5	w_6
Truth	0	4	0	3	0	7
Linear Model	-0.244061	3.54013	0.221939	2.6042	0.0982158	6.83617
LASSO	-0	2.65623	0	1.84839	0	5.80624

- In Linear Model, x_1 , x_3 and x_5 have effect on y (which is WRONG!)
- In LASSO, x_1 , x_3 and x_5 have no effect on y (CORRECT!)
- LASSO can also be applied before another model.

Logistic Regression

- classification,

x_1	x_2	y
1	0	1
2	1	0
3	- 2	0
4	3	1

• How are y and x related?

Logistic Regression

• Logistic Regression models $P(y=1|x)=\hat{y}$ as:

$$\hat{y} = rac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

Logistic Regression

• Logistic Regression models $P(y=1|x)=\hat{y}$ as:

$$\hat{y} = rac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight) = w_0 + w_1 \cdot x_1 + w_2 \cdot x_2$$

- $\left(\frac{\hat{y}}{1-\hat{y}}\right)$ is also called odd-ratio.
- Logistic Regression assumes that the log of the odd ratio is linear.

How to find w_0, w_1, w_2 ?

- **Step 1**: Define the loss function $l(\hat{y}, y)$
- Step 2: Find \boldsymbol{w} that minimizes the total loss function

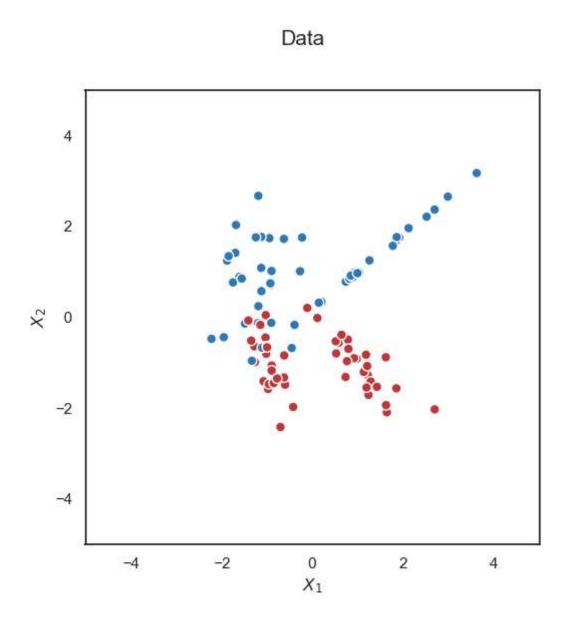
• Define the loss function: We use the log-loss or cross-entropy loss function

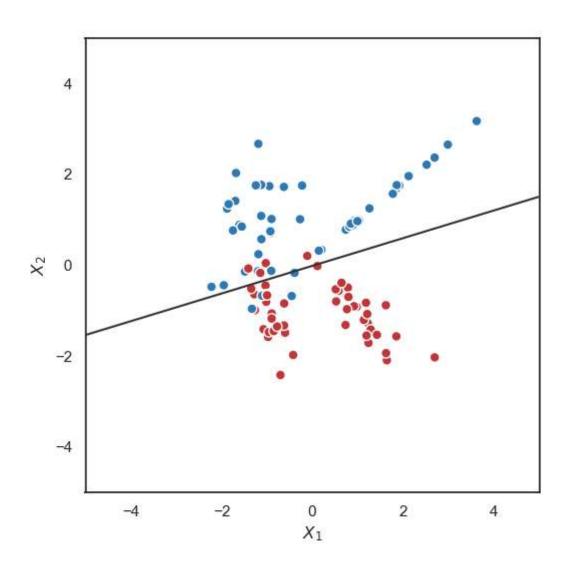
$$l(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

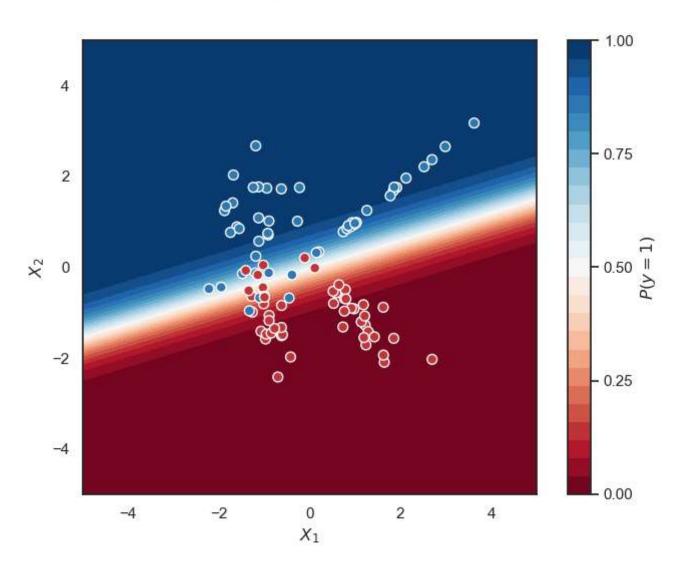
• Total Loss:

$$egin{split} L(w_0,w_1,w_2) &= -\log\left(rac{1}{1+e^{-w_0-w_1}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-2w_1-w_2}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-3w_1+w_2}}
ight) \ &-\log\left(rac{1}{1+e^{-w_0-4w_1-3w_2}}
ight) \end{split}$$

• We need to find w_0, w_1, w_2 that minimizes the total loss







• The idea is the same as for linear model

.

