Regression Trees

Regression Trees

- ➤ The tree will search for all combination of predictors and cutoff value to decide the best split
- In Regression tree, the best split is the split that minimizes

$$\sum_{i:\mathbf{x}_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:\mathbf{x}_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$
RSS of obs. in left branch
RSS of obs. in right branch

 $\blacktriangleright \ \hat{y}_{R_1}$ and \hat{y}_{R_2} are the means of the responses falling in to the left branch and right branch, respectively.

Example

	X_1	X_2	Y
A	1 🗸	0	(1.2)
B	2 V	1	(2.1)
C	3 V	2	(1.5)
ρ	4	1	3.0
E	2 v	2	(2.0)
F	ט 1	1	1.6

Using the RSS to decide the best split among

- Split 1: Region 1 $X_1 < 4$, Region 2 $X_1 \ge 4$
- lacksquare Split 2: Region 1 $X_2 < 2$, Region 2 $X_2 \ge 2$

splitl

				-1.02
X_1	X_2	Y	Â	PSS = \(\frac{7}{4-9}\)
1	0	1.2	1.68	$=(1.2-1.61)^{2}$
2	1	2.1	1,68	+ (2.1-1-68)
3	2	1.5	1.68	+ (1.5 - 1.68)
4	1	3.0	3.0	L 120 - 3.0)
2	2	2.0	1.68	+ (2.0-1.60)
1	1	1.6	1.68	+ (1.6 - 1.68)2
			RSS	= .549

Similarly me can calculate ESS of Split2.

 $pss = \sum (4-\hat{\gamma})^2$

. The base line model:

Predict 4 without using information of
$$X$$
.

(Yealet 7 by $\overline{7}$: $\widehat{7} = \overline{7}$

pss of this model: $\overline{Z}(7-7)^2$

$$= 1 - \frac{\sum (4 - \hat{4})^2}{\sum (4 - \hat{4})^2}$$

① If RSS of Model
$$A = 0$$
, $\Rightarrow P^2 = 1$

on validation data: model A is worse than model B (Susseline model)

Suppose that your regression tree contain only one split which is	

the best split in the previous question. Calculate the \mathbb{R}^2 of this

regression tree on the training data.

ess of the base you model

X_1	X_2	Y	9=7	⇒ I (1-7)
1	0	1.2	1.9	•
2	1	2.1	1-9	$= (1.2 - 1.9)^{1} +$
3	2	1.5	1-9	(2.1 - 1.9) +
4	1	3.0	1-9	(2.(- 1.1) 1
2	2	2.0	1.9	(1.5 -1.9) t
1	1	1.6	1.9	(3 - 1.9)
				(2-(.9)) (1.6-1.9)
				(1.6
				≥ 2

$$\Rightarrow \quad \ell^2 = 1 - \frac{.546}{L} = .726$$

Use your regression tree to predict the y for the below testing data. Calculate the ${\cal R}^2$ of the tree on the testing data.

x_1	x_2	y
3	1	3.0
1	5	3.6
5	1	4.0
5	2	3.9